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Random walks with branching have been used to calculate exact properties of the ground 
state of quantum many-body systems. In this paper, a more general Green’s function identity 
is derived which relates the potential energy, a trial wavefunction, and a trial density matrix to 
the rules of a branched random walk. It is shown that an efficient algorithm requires a good 
trial wavefunction, a good trial density matrix, and a good sampling of this density matrix. An 
accurate density matrix is constructed for Coulomb systems using the path integral formula. 
The random walks from this new algorithm diffuse through phase space an order of 
magnitude faster than the previous Green’s Function Monte Carlo method. In contrast to the 
simple diffusion Monte Carlo algorithm, it is an exact method. Representative results are 
presented for several molecules. 

I. INTRODUCTION 

Forty years ago Fermi [ 1 ] suggested that properties of the ground state of a 
quantum system could be calculated by a random walk. In a more general context, 
random walks have been recognized to provide Green’s functions for certain partial 
differential equations [2]. After some preliminary research on quantum Monte Carlo 
in the early 1950s very little progress was made until Kalos applied [3] some of the 
techniques from neutron transport Monte Carlo [4]: importance sampling and 
iterated Green’s functions. By importance sampling it is meant that the probability 
distribution of random walks is changed from 4, the ground state wave function, to 
~4 where v is the importance function. The advantages of this transformation will 
become evident later. The first major application of the method, which is now called 
Green’s Function Monte Carlo (GFMC), was by Kalos, Levesque, and Verlet ]5 ] 
who calculated the exact ground state energy of approximately 100 hard spheres, at 
densities near melting. This was followed by extensive simulations of the ground state 
of superfluid helium which achieved satisfactory agreement with experiment 161. The 
particular algorithm used in those calculations will be referred to in this paper 
as KLV. The methodology and results have been reviewed in Ceperley and Kalos [ 71. 

In recent years interest has shifted to Coulombic systems, in particular small 
molecules [&lo], the electron gas [ 111, and many-body hydrogen [ 121. In contrast 
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to helium 4, in these systems the interaction is known exactly; it is just the Coulomb 
potential between electrons and nuclei, at least in the nonrelativistic limit. In prin- 
ciple, the method is exact and in practice has been found to give reliable and precise 
results. The difficulty in applying random walk methods to electronic problems is that 
the probability distribution of the random walk cannot be made everywhere positive 
unless the nodes of the antisymmetric ground state are known. Usually the fixed-node 
approximation is made [ 111, where it is assumed that the nodes of a trial function are 
correct. For good trial functions (e.g., those from a self-consistent field method) this 
approximation has been found to give quite accurate results [9, lo]. This paper does 
not concern itself with the difficulties introduced by Fermi statistics, but only with 
the random walk process. In both the fixed-node algorithm and in an exact fermion 
algorithm, the boson random walk is used; only the boundary conditions are 
changed. So an improvement in the random walk algorithm will be equally as useful 
for fermion systems as it is for boson systems. 

In most Monte Carlo studies of electronic systems, the exact KLV algorithm has 
not been used, but instead a simple stochastic process, reminiscent of Fermi’s 
original suggestion, has been employed. In this approach, which will be referred to as 
diffusion Monte Carlo @MC), the Schrodinger equation in imaginary time is viewed 
as a diffusion plus branching process, and a small time approximation to the 
evolution of the probability distribution is used. The method is only exact as the time 
step becomes suffl~iently small. Indeed some have suggested 191 that a signi~cant 
error persists even at very small time steps, because of the attractive Coulomb 
singularity. With small molecules, where very long random walks can be carried out 
with resulting small error bars on the energy, an exact method is quite desirable. 
Otherwise the effect of the time step error must be assessed. In addition, recent 
calculations have removed the fixed-node approximation [ 13 1, and then it was 
found to be difficult to simulate, sufficiently accurately, the simple diffusion 
process in the nodal region. In fact the difference between the exact and the lixed- 
node energy, and the error induced by a finite time step, are of the same order of 
magnitude for reasonable time steps. 

However, it is found that the KLV algorithm applied to electronic systems 
converges an order of magnitude more slowly than diffusion Monte Carlo as 
measured by the average step size of the random walk. Hence the random walk with 
KLV needs to be much longer to achieve the same statistical error bars and 
convergence to the ground state. The slow convergence results from the use, in KLV, 
of domains from which the new random walk step is sampled 1’71. Because the 
sampling is from the Green’s function of an ideal gas, the potential energy must be 
bounded above in each domain and consequently the domains must be such that no 
two electrons can “touch.” In practice, each electron is constrained to move in a 
sphere with a diameter less than the distance to the nearest electron and this 
constraint leads to rather small steps. 

It is shown here that the exact Green’s function can be related via an integral 
equation to any trial density matrix, not just the ideal gas one. If the elec- 
tron-electron cusp is inciuded properly in the trial density matrix, the domains in the 
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KLV algorithm can be eliminated with the result that the electrons can move much 
further in one step. Such a trial density matrix can be constructed from the *Feyn- 
man-Kac formula for the exact density matrix, and it will be shown below that this 
leads to time steps as long as in the DMC method. Hence it is possible to have both a 
long time step and an exact simulation. 

In Section II the terminology of the branched random walk is introduced and such 
a walk is related to an integral equation. In Section III, the exact many-body Green’s 
function is related via an integral equation to an arbitrary density matrix. Section IV 
address the question of the efficiency of a random walk in calculating properties of 
the ground state. In an efficient random walk, branching is kept to a minimum and 
the average step size is as large as possible. In this new algorithm there are three 
arbitrary functions which can be adjusted to optimize the efficiency: the importance 
function, the trial density matrix, and the sampling function. The importance function 
should be chosen as close to the ground state as possible and the trial density matrix 
as close to the exact density matrix as possible. In addition the new points on the 
random walk should be sampled from the importance-transformed density matrix. 
Only if all three functions are optimal is the random walk optimal. In Section V a 
trial density matrix is derived from the path integral formula and details of its 
computation are given in the Appendix. Finally Section VI compares the results from 
this new algorithm with those of the KLV and DMC methods for several molecules. 

II. BRANCHED RANDOM WALKS 

This section introduces the terminology that is used in Green’s function Monte 
Carlo to describe the random walk process and derives the relationship between the 
“rules” of the random walk and a Green’s function. Since the branched random walk 
can be used to simulate many linear integral equations, this section will be general 
and not refer at all to the Schriidinger equation. Let R denote a point in 3N- 
dimensional space, where N is the number of physical particles (electrons). The 
process begins with a set of points (Ri) sampled from an initial probability 
distribution f,(R). This set is referred to as the Iirst generation; the number of such 
points is the population of the first generation. Given any point R’ in this set, a new 
point R is sampled from the distribution h(R, R’), and from these points are 
calculated a promotional probability q (0 < q < l), and a multiplicity M (a 
nonnegative integer). With probability q, M copies of R become members of the 
second generation; otherwise these M copies are intermediate points. If the 
multiplicity M is zero, that random walk is terminated. This process of making 
multiple copies is called branching. Except when taking averages, intermediate points 
are treated identically to first generation points. The random walk process continues 
until all of the walks, including the intermediate points, reach the second generation. 
The population of points in the second generation have a distributionf,(R) and will 
be the source for the next iteration, etc. 

The Green’s function G(R, R’) is defined as the number density of points R in the 
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second generation coming from a singie point R’ in the first generation. The 
distribution of second generation points is then 

.&CR) = 1 dR’ G(R, R’).f@‘h i (1) 

or, in operator notation, f, = G * f,, and f, = G”-if, . 
The number density for a random walk arriving in the second generation in one 

step (no intermediate points) is 

H=H(R,R’)-h(R,R’)q(R,R’)M(R,R’), (2) 

while the number density of creating an intermediate point in one step is 

KEK(R,R’)-h(R,R’)(l -q(R,R’))M(R,R’). (3) 

The total Green’s function G is the sum of one step processes, two step processes, etc. 

G=H+H*K+H*K*K+.~.. (4) 

Assuming this series converges, that all of the intermediate points will eventually 
reach the second generation, the series can be summed to give 

G=H+G*K. (5) 

This operator equation specifies the relationship between the “rules” of the random 
walk (h, q, and M) and the Green’s function G. Taking the coordinate representation 
of G, H, and K, it becomes an integral equation of the second kind relating the 
known functions H and K to the unknown Green’s function G. 

It is quite simple to generalize this algorithm. For example, the multiplicity M need 
only be positive, not necessarily an integer. Let the number of copies of R, actually 
made, be ]M(R, R’) +x where H is the largest integer less than a, and x is a 
uniformly distributed random number in [0, 11. Then H is unchanged since 

ff(R,R’)=f.ld~h(R,R’)q(R,R’)]M(R,R’)+%j 
‘0 

with a similar result for K. Hence G is still given by (5). 

III. GREEN'S FUNCTION MONTE CARLO 

(6) 

The ground state of energy of a quantum many-body system may be estimated 
using the branched random walk. Green’s Function Monte Carlo, as developed by 
Kalos [3], consists of, first, relating the many-body Green’s function for the 
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Schrodinger equation to the ideal gas Green’s function via an integral equation and, 
second, transforming this Green’s function, by multiplication with a known impor- 
tance function /SJ, to achieve a better behaved random walk. Following Kales. the 
Green’s function for the Schr~dinger equation with importance sampling is 

G(R, R’) = y(R) y-‘(R’)(& - w) f= dt(R ( e -(z~- w)t IR’), 
. 0 

(7a) 

or 

0) 

where 2 is the many-body Hamiltonian, (u(R) is the importance function, E, is the 
trial energy, and w is a constant (W < ET). Let the eigenvalues and eigenfunctions of 
Z be E, and /a). Then the distribution of walks in the rzth generation can be written 
in terms of these eigerfunctions as 

“-‘,a)(+ ‘f,). (8) 

If co > w and (0 / w-tfi) # 0 (E, and 10) are the ground state eigenvalue and 
function), then for large enough n the ground state will dominate: 

The population of the rtth generation will have a mean value of j dRf,. From Eq. (9), 
to keep the population stable, for large n (neither expanding or declining) the trial 
energy must equal the ground state energy (E, = EJ. The constant energy w controls 
the rate at which distribution f, converges to the ground state as can be seen from 
Eq. (8). As w approaches F, the higher eigenfunctions are attenuated more per 
generation. In the next section LV will be related directly to the effective time step of 
the random walk. 

The ground state energy can thus be estimated by the growth of the population. 
Another useful way of estimating c0 comes from the averge value of the local trial 
energy (w-‘~?v). Since Z is Hermitian the average value of the local trial energy 
approaches the ground state energy. 

~o=(YlO)-l(Yl~lO)=(OIYVW-l~Y)(YloO)--’ 

= ,“-t”, (y-‘/7??y),, 
(10) 

where ( ma* >n is the average value over the population in the nth generation. In 
order to achieve good estimates of co, the local trial energy must be as smooth as 
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possible. Hence the importance function w should be as close as possible to IO). 
particularly in regions where the potential energy is singular. 

In order to sample the Green’s function G (Eq. (7)) with a branched random walk 
it must be related via the integral equation (5) to known functions H and K. In KLV, 
H was chosen to be the ideal gas Green’s function. Here the Green’s function is 
related to any trial density matrix. To obtain this relationship between H and K 
consider T, , a known operator, continuous in /I, with T,, = I and T, = 0. The 
following operator identity comes from integration by parts 

(<&p,+jO:dl(TR- j?ip(~-w)~‘(Ghv+~) T,. (11) 
0 -0 

It is easy to see that Eq. (11) will relate the many-body Green’s function G (Eq. (7)) 
to H with the integral equation (5) if H is chosen to be 

H(R,R’)=y(R)y/-l(R’)(E,-w)j’=dP(R~T,IR’). (12) 
0 

The kernel must then be 

K(R,R’)=-yl(R)W-‘(R’)~o~~~(Rl (x-w+$) TJR’). (13) 

Now H must be as close to G as possible to minimize the number of intermediate 
points. In fact convergence of the branched random walk is only ensured if the kernel 
K is sufficiently small.’ Also T, must be chosen so that K is positive everywhere, 
since promotional probabilities q greater than one or multiplicities M less than zero 
cannot be allowed. Clearly the best choice for Tb is exp(-(R - w)/3), proportional to 
the density matrix at a temperature 8-l. But since the density matrix for a many- 
body system is also unknown (remember H must be a computable function), assume 

(RI T, IR’) = exp(-N,)p,(R R’;P), (14) 

where pT is a known (computable) trial density matrix and N, a normalization 
function’ needed to keep K positive. Define the trial-density-matrix-local-energy as 

EB(R,R’)=pp,’ .,+$ p&R’;P). 
i 1 

(15) 

If pr were the exact density matrix, then E, would be zero everywhere. Let us assume 
that E, can be bounded everywhere by B,. That is, 

B, > E,(R, R’) for all R, R’. (16) 

’ The largest eigenvalue of K must be less than unity. 
* In principle N, and B, could be functions of R’. For simplicity they will be assumed to depend only 

on /3. 
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The kernel from Eq. (13) is then 

K(R,R’)=W(R’)~‘y/(R)/U~~~(R~T,IR’)(w+N,-E,), (17) 
-0 

and will be positive everywhere if v and pT are, and if 

N, = (’ dt(B, - w). (18) 
-0 

The parameter /? up to this point has only been an integration variable in the 
definition of H and K (Eqs. (12), (13)). Those integrations will be performed by 
sampling p from the joint distribution h(R, R’;/3). In fact it will be shown below that 
/3 is the diffusion time of the random walk and corresponds to imaginary time in the 
time-dependent Schrodinger equation. 

Finally, the promotial probability and the multiplicity can be related to p-, , w, and 
h using Eqs. (2), (3), (12), (17), (18). 

q=(l +(B,-E,)/(E,-w))-‘, 

M= v(RW’We -“‘&(R, R’; p) (B. - E, + E, - w) 

m R’; P> 

(19) 

(20) 

This constitutes a more general algorithm than KLV Green’s Function Monte 
Carlo, since the Green’s function has been related to any trial density-matrix pT. In 
fact the KLV algorithm can be recovered by choosing pT to be the free particle 
density matrix inside a domain D(R’) 

(21) 

L4KR’;P)=O, R G? D(R’). 

The domain D in KLV [ 5 1 is a Cartesian product of N spheres centered around each 
particle with radii chosen so that the spheres do not overlap. Since p-r has a discon- 
tinuous gradient at the surface of D, E, will contain surface terms which give rise to 
a new type of intermediate point, where the random walk moves to the surface of D. 
It is these surface moves which limit the step size (lR - R’I). The advantage of the 
KLV algorithm is that E, is the potential energy and need only be bounded inside the 
domain D. In the present approach one must bound E, everywhere. However, for 
electronic systems it is possible to construct an accurate trial density matrix with a 
bound which allows step sizes an order of magnitude larger than in KLV, thus 
achieving quicker convergence of the random walk. From a programming point of 
view the new GFMC algorithm differs from KLV only in the greater flexibility of 
sampling new points and in the explicit formulas for q and M, Eqs. (19), (20). 
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IV. OPTIMIZATION OF THE RANDOM WALK 

The branched random walk will calculate the exact ground state energy only if the 
initial population is infinite, and if the process is advanced an infinite number of 
generations. In any finite simulation there are statistical errors, convergence error, 
and bias. A statistical error is inherent in any Monte Carlo calculation since an 
average over a finite number of samples has a variance inversely proportional to the 
number of samples. Convergence error results iff, for practical values of n has not 
converged to li/ IO). By bias, in this paper, it is meant that the probability density in 
the nth generation is not proportional tof, because of the finite number of walks. The 
as yet undetermined functions in the random walk algorithm, namely v, pT, and h, 
are to be chosen to minimize these errors. 

The variance of the ground state energy estimate is 

var&) c ((w~‘~w - ~J*)/W*), (22) 

where N* is the total number of samples which contribute to the average and K 
(0 < K < 1) is a factor to account for the correlation between members of the sample. 
If every point on the random walk were independent of every other point then K 

would be unity. However, because of branching and finite step sizes K usually is less 
than unity. It is clear that to reduce these correlations branching is to be avoided, 
since coverage of phase space is lost when walks are terminated, and clustering 
results from duplication of walks. Also, to reduce this variance, the average number 
of intermediate points should be reduced since they do not contribute to the average. 
But it is most crucial to choose w so that fluctuations in the local energy are small. 
Finally, the computer time needed to evaluate p*, E,, and h will limit the total 
number of steps in the simulation. 

From the eigenvalue expansion of the Green’s function (Eq. (8), it can be seen that 
convergence to the ground state is controlled by (so - w)/(E, - w) for those excited 
states la) with a component in the initial distributionf,. Typically,f, is taken to be 
proportional to / ~1~. For quick convergence, w should be as close as possible to E, 
and v/ close to IO). It is important that v/ have the correct long range properties since 
otherwise convergence can be expected to be slow. 

A bias results from too frequent renormalization of the population of walks. The 
generational population will fluctuate even if the trial energy is exact because of fluc- 
tuations in branching. Since the population is not constrained, it will drift up and 
down, and if the process is run for enough generations, it will eventually either be too 
large to continue, or zero. Hence the population needs to be renormalized every so 
often, or stabilized by some other means. However this is done, a bias will be 
introduced, because the probability of removing or adding a walk in order to stabilize 
the population will be correlated with the position of the walk through its past 
history. This bias will depend on the ratio of the renormalization time to the 
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correlation time of the branching. This renormalization time’ is proportioi~al to the 
average population divided by the mean squared ~uctuations in the branching 
(P/{(~ - l)*)). H ence to reduce bias branching must be kept to a minimum. 

Relationship to a Diffusion Process 

As was noted by Fermi [ 1 ] and recently used by Anderson [ 8 ] and others [9-l I] 
the ground state can also be simulated by a diffusion and branching process. The 
intimate relationship between this diffusion process and Green’s Function Monte 
Carlo allows one to determine the sampling function h in GFMC. The time- 
dependent importance-sampled Green’s function used in diffusion Monte Carlo ] 11 ] 
(DMC) is 

g,(R,R’)=irr(R)W-l(R’)(Rle-O’X~ E”‘lR’j. 

Then G is simply the Laplace transform of g, 

(23) 

G(R,R’)=r$ I,; d&(R, R’) e-“lrC1, (24) 

where the Lapiace transform variable ro = (eO - w)- r is defined as the generational 
time step. Since 8 is being sampled from some distribution, GFMC can be regarded 
as a variable time step version of DMC with the average time step being t,. 

It is easy to verify that g, will satisfy the diffusion and branching equation 

with g,(R, R’) = 6(R -R’). 
The total population resulting from a single point R’ a time p later is 

f’,(R’) = /” dR g,(R, R’), 

then from Eq. (25) and Green’s theorem 

(26) 

(27) 

where ( e-v ). means the average over the population at time /I, i.e. the average over 
g4 = g,/P,. Thus, the average change in the population in DMC, and through 

’ Assume each point in a population of size P, branches on the average once with a variance E. The 
variance in the total population will be PO& and the distribution of the new population will be propor- 
tional to exp(-(PI” - P:“)‘/~E). Hence the variable P I” executes a one-dimensional random walk with 
step size .s”* and the average number of generations needed until P = 0 the first time is P/t;. 
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Eq. (24) in GFMC, is determined by the local energy. The crucial role of importance 
sampling is to control the branching process. If importance sampling were absent 
(w = 1) the change in population would be determined by the bare potential. This 
means that in many-body systems, an exponentially small number of walks would 
branch very many times, and the rest would branch to zero. 

Suppose the trial density matrix were equal to the exact density matrix, pT = pO. 
Then the mean value of the multiplicity in Eq. (20) would be P,(R’) and the optimal 
sampling function for R and /? would be h,(P) gB(R, R’), where 

h,(P)=-$exp -j:dr(B,+ l/rG)]. 
[ 

(28) 

To sample this distribution4 generate x, a uniformly distributed random number in 
10, 11, and solve for /3 from 

-In x = [” dt(B, + l/r,). 
-’ 0 

From Eq. (28), the effect of a poor trial density matrix, as measured by the bounding 
function B,, is to cause small diffusion times p and hence slow convergence and high 
statistical correlations. To avoid many intermediate points r6 must be chosen such 
that 

The optimal spatial sampling function go(R, R’) is the solution to Eq. (25) with no 
average branching term. Assuming the local energy is constant in the sampling 
region, then 

with the boundary conditions go(R) = 6(R, R’). This is the Smoluchowski equation 
[ 141 which describes Brownian motion in an external potential proportional to 
ln lvvI*. 

An approximate solution to Eq. (3 1) is obtained by expanding In y/(R) to second 
order in (R -R’) and neglecting higher order terms. Assuming the matrix of second 
derivatives (a,a, In y(R)) is positive definite, the solution is the product of 3N 
harmonic-oscillator density matrices in the directions given by the eigenfunctions of 
this matrix [ 141. In practice diagonalizing this matrix is a significant computation, 
and it has been found that one can neglect all but the diagonal terms without signifi- 

4 In many situations it is desirable to impose an upper limit on the time step fi since pr or h may be 
very inaccurate for /I > /3,. One can set B,= co for p > p, in Eqs. (18), (19), (29). Thus q = 0 for 
@=A3 and an intermediate point is generated. The same result is obtained by changing the limits of 
integration in Eq. (1 I) to be lO,/3,]. 
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cantly changing the fluctuations in the branching. For each particle i its new coor- 
dinate is then given by 

ri = rl + (pA2/mi) ‘i/-l Vlr/ + Xi, (32) 

where xi is a normally distributed random vector with zero mean and variance 

(xf) = (/?h2/mi)( 1 + /3h2V2 In ~/3nz,). (33) 

Special treatment must be given in regions where V In / v/I or V2 In 1~1 are very large, 
such as near encounters of two particles or near a node. In addition, it has been 
found useful to enhance the probability of large moves in order to ensure the 
multiplicity M is bounded as IR -R’ 1 becomes large. 

V. THE TRIAL DENSITY MATRIX 

In Section IV it was shown that fluctuations in branching come from inadequacies 
in pT, v/, and h. However, the time step, and hence the convergence of the walk, is 
determined by pr alone through the upper bound to the trial-density-matrix-local- 
energy. The trial density matrix must approximate well the exact density matrix for 
values of /I on the order of the average time step r,. For small & the density matrix 
has approximately the semiclassical form pO exp(-Pv), where I’ is the potential 
energy and p,, is the ideal gas density matrix. For charged systems this form does not 
have a bound because it has the wrong behavior at small interparticle distances. If the 
potential energy is a sum of pair interactions (V = xi, j uij), a pair product form will, 
however, give a satisfactory trial density matrix, since the exact density matrix has 
this form at small enough/?. Assume 

pT(R,R’;P)=p,(R,R’;P)exp - x u(rij>r;i;P) 3 i<j J 
where tij is the relative distance between particles i and j. The trial-density-matrix- 
local-energy can then be written in the form 

E, = x B,(r,, rij) - 5‘ x Ff, 
i<j f 2mi 

where 

(35) 

(36) 

(37) 

and 

Fi= 5’ Viu(rij, rb;P), 
.rTi 
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and y is the reduced mass of particles i and j. Then E, will be bounded by zero if the 
two body problem, 8, = 0, is solved since the squared gradient term is negative.5 

Notice that if Eq. (36) is solved, u will be linear in the interaction U. Hence if the 
exact density matrix is expanded in a power series in the interaction, u will be the 
linear term. The path integral formula for the density matrix (Feynman-Kac) [ 15 1 
gives such an expansion 

I) 
3 (38) 

R’-R 

where the average (( .. . )) is over all Weiner paths from R’ to R in time /? and V(t) 
is the total potential energy at time t on this path. Assume V(R) is pairwise additive 
and has a Fourier transform. Expanding the exponential in a power series gives 

then the solution to the equation, 8, = 0, will be 

(39) 

(40) 

where p. is the two-particle ideal-gas density matrix 

po(r, r’;P) = (27rA’/?/,~i-~‘~ exp[-P(r - r’)2/(2h2P)]. (41) 

The density matrix POePU is a much better approximation to the exact density matrix 
than po( 1 - U) since all of the higher order averages in Eq. (39) are approximated by 
their uncorrelated versions (i.e., (V(t,) V(t,)) ‘Y (V(t))‘). This is accurate as long as 
distances are larger than /3”*. 

Equation (40) for u can be simplified by the use of Fourier transforms to give 

U(r,r’;B)=P!“d~W((l-~)r’+rr:Br), 
-0 

(42) 

where W(r; t) is a time-dependent smoothed potential with Fourier transform 

W, = vk exp 
L 

h2k2@ - t) 
- 

I z43 . 
(43) 

Thus the pair density matrix is the integral along a straight line from r’ to r of the 

’ This bound is actually attained since the squared gradient term vanishes as all of the electrons are 
removed from each other and from the nuclei. Since E, < 0 one can easily show that pT <p. For 
Coulomb systems, one can easily show that this trial density matrix satisfies the conditions assumed in 
Section III, namely, To = I and T, = 0. 
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smoothed potential W(r; t). In the case of the Coulomb potential (u(r) = e,ej/r) one 
has 

W(r, t) = E!fJ erf r 
L t 

PB 
I .‘? 

r 2A2t(p t) 1 J . 

The properties of u for the Coulomb case, and a procedure for calculating its value, 
are discussed in the Appendix. 

Now consider the situation, common in simulations, of periodic boundary 
conditions. There are two effects of the boundaries. First, the ideal gas density matrix 
(Eq. (4 1)) must be replaced by its periodic counterpart pc: 

pi@, r’; p) = f PO@, r’ + h/4, (45) 

ne -o( 

where n is an integer vector and L is the set of three primitive vectors of the Bravais 
lattice of the periodic system. Second, the potential energy becomes periodic. Usualy 
in Coulomb systems the Ewald potential is used 

up(r) = \‘ zi(r + La), 
n 

where a neutralizing background is added and the sum in Eq. (46) is performed in 
such a manner as to assure convergence [ 161. The periodic pair density matrix can be 
written in terms of the infinite one using Eqs. (39), (40), (44), and (45). 

uP(r r/. 0) = Cvdo@ + L n,,r’+Ln,;p)U(r+Ln,,r’+Ln,;p) 
3 3 

pC(r, r’; PI 
(47) 

Again the procedure for calculating the value of this function for a Coulomb system 
is given in the Appendix. 

VI. RESULTS 

The branched random walk with the path integral density matrix has been 
programmed and tested on several small molecules and compared with the other 
methods (KLV and DMC). As explained in the Introduction, for those molecules 
with more than two electrons, the fixed-node approximation was made in order to 
converge to an antisymmetric distribution. For all four molecules the importance 
function used in these calculations was v,,, of [lo]. 

The diffusion Monte Carlo algorithm employed in this calculation was exactly that 
of [lo]. There is some ambiguity in choosing the time step in this method, since there 
is a trade-off between accuracy of the algorithm and statistical error. A systematic 
study [lo] of time step dependence has been made for the molecule H,. As a rule of 
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thumb, the time step is chosen so that the rejection ratio is less than 1%. (Rejection is 
an ad hoc method of enforcing detailed balance of the diffusion process.) With this in 
mind a time step /3 = O.Ol/Hartree has been used with all four molecules. 

In the KLV algorithm, for any given configuration R, a sphere radius a, around 
electron i is computed from the distances to nearby electrons and a bound to the 
potential energy is then found with those radii. Let r: be the minimum distance 
between electron i and any other electron and let Ei be the magnitude of the electric 
field that electron i feels. Then a satisfactory bound on the potential is (with units 
e= 1) 

B = V(R) + x [ail?, + Z(ai/r”)‘(r,? - 2ai)p1]. (48) 

The sphere radii ai were chosen to approximately maximize the average diffusion 
time; this leads to the equation for ai 

dB 
ai - = 2X2, 

dai 
(49) 

which has the power series solution 

where Ai = (r~/8)“‘/~. The bound B is not rigorous for a many-electron system, but 
no violations of it have been seen in approximately lo* steps on a variety of 
molecules. The algorithm for choosing the radii is nearly optimal, since the average 
diffusion time changes very little if ai = r*/2, the maximum possible. 

The ground state energies for the three methods were estimated using Eq. (10). 
Five generations at the beginning of the run were discarded in computing the mean 
value. In all cases the energy estimates from the three methods were the same within 
the statistical errors and are given in Table I. Table I also shows the average time 
step, the average promotional probability, and the average error of the three methods 
on the systems H,, He, LiH, and Li,. The average error is defined as the product of 
the error of the estimate of the energy times the square root of the total CPU time (in 
CDC 7600 set). The variance was calculated by dividing the total computer run into 
50 blocks and calculating the dispersion of the block energies. Because the error of 
the variance is large, these error estimates are rather uncertain. The average 
population size was in the range of 250 to 1000 systems and the average diffusion 
time per block was about f hartree-‘. 

The comparison of averge error shows that the improved GFMC algorithm does 
lessen the CPU time needed to achieve a given error bar in the energy, typically by a 
factor of 4 to over KLV and from 1.5 to 10 over DMC. It should be stressed that 
these error estimates probably have an error of about 25%. The increase in the 
diffusion time from KLV to the present GFMC algorithm is quite dramatic, a factor 
of ten being typical. 
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TABLE 1 

System H2 He LiH Liz 

63 -1.174(l) -2.903(2) -8.066(4) --14.980(7) 

&hlc 0.01 0.01 0.0 1 0.01 
LMC 0.079 0.025 0.15 0.02 1 

(P) KL” 0.053 0.022 0.0068 0.0037 
(Q)KLY 0.20 0.16 0.29 0.32 
6KLV 0.030 0.04 1 0.22 0.45 

0-3 0.55 0.43 0.087 0.043 
k> 0.70 0.74 0.80 0.82 
i 0.017 0.015 0.05 0.17 

((M - I)*)“’ 0.49 1.46 1.23 0.41 
(Pf - 1)*xK 0.10 0.05 0.023 0.020 

Note. The results of runs of the three different methods on the systems H,, He, LiH, and Li,. &) is 
the estimated ground state energy (fixed-node approximation) with the number in parentheses 
representing the statistical error in the last digit. /3,,c, (/I),,,, , and (/?) are the average time steps in the 
three methods. (q)KLV and (q) are the average promotional probabilities. c,,,. , [,, >, and [ are the 
average errors of the three methods, where < is the estimated error bar of the energy times the square 
root of the CPU times (CDC 7600) in seconds. ((M- 1)2) is the rms multiplicity for GFMC and 
(vf - ~~‘>zK is the rms multiplicity in a DMC calculation at the same timestep. All units are atomic 
units: energies in hartrees, time in inverse hartrees. 

There is a much greater fluctuation in the branching multiplicity in the present 
GFMC method than in DMC. Table I shows the rms value of the multiplicities for 
GFMC. In DMC [8] the multiplicity is 

M DMC=exp[-P(~(E,(R)+E,tR'))-E,)~~ (51) 

where E,(R) is the local energy at R. The rms value of MD,, for /3 equal to the mean 
diffusion time in GFMC is also shown in Table 1. Hence the exact method has fluc- 
tuations in branching from 5 to 50 times that of DMC. In fact, for these molecules, 
the ~uctuations in the br~ching ratios, rather than the local trial density matrix 
energy, determine the maximum diffusion time, since it is unwise to pick a diffusion 
time (rG) such that the rms value of M is much greater than unity. The Neumann 
series (Eq. (3)) may not converge in such a case. 

The multiplicities in DMC of course are only approximate. The correct formula is 

A4 DMC = (e -.ril dmL(f) - yR -R,, (52) 

where ( +.- )R-rR, means the average over all drifting random walks from R to R’. 
It may be that the two point formula of Eq. (51) simply underestimates the fluc- 
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tuations of the local energy in the neighborhood of R and R ‘. Hence the difference in 
the branching ratios may be simply due to the difference between an approximate and 
an exact method. It seems likely that a major reduction of the fluctuations in 
branching can be achieved by a better trial density matrix or and by a much better 
sampling of go. In any case the average error seems not to have been affected too 
seriously by the fluctuations in branching and no dificulties have been encountered 
in stabilizing the population. 

In summary, this generalized Green’s Function Monte Carlo method has been 
shown to be more efficient than the KLV method while still being exact. The 
efficiency is somewhat better than the diffusion Monte Carlo. 

APPENDIX 

This appendix derives some of the properties of the pair Coulomb trial density 
matrix and indicates how it can be computed. It is well known that the Coulomb 
potential possesses a unique constant of motion, the Runge-Lenz vector ] 171. This 
implies that the Coulomb density matrix ~(r,, r2;P) depends only on r, + r2 and r,* 
and not on y1 - r2 as it would for any other potential. This symmetry must also hold 
for u(ri, r2; p) since it is the linear term in a power series expansion of the density 
matrix. It is convenient to work with the variables 

y = eiej(2/3p)‘i2/h, 

Y = (r, + r2 - ~,*>(2fi2P/P)-“*, (AlI 
s = ‘,2(2hy?/p)-“2, 

since for these variables the physical region is the quarter plane (y > 0, s > 0). Large 
values of s are not required since the sampling density is proportional to exp(-s2). 
From Eqs. (42) and (44) 

U(TI.12;li)=Yj’~~erf(f(g+2sll[1(1-~)J-”*)/[y+2sl]. (A-2) 
0 

Using the definition of the error function and interchanging the integrals this can be 
rewritten in the form 

I 

cc 

u = y ln(1 + 2s/y)/2s - Z-“*s-’ 
I , 
x0 

where 

x0 = (y’ + 2sy)“2, 
e = (x’ - xy 

41 + Y/S> . 

(A3) 

GW 



420 D. CEPERLEY 

As long as xg > 1 the second term can be neglected since it will be of order exp(-xi). 
An expansion of the logarithm term in the integrand in powers of E leads to an 
asymptotic expansion of u in terms of confluent hypergeometric functions 1 18 1, 

Along the diagonal (s = 0) only the k = 1 term survives, hence u is a confluent 
hypergeometric function there. Note that exp(-xi) is just proportional to the 
probability density that a Weiner path will hit the origin (r = 0) in going from r, to 
rZ. If this is su~ciently small, all but the first term in Eq. (A3) can be neglected. 

To compute u in the course of the random walk, u, a,,u, a$~, and a,2,z4 have been 
tabulated in a 20 x 20 grid for 0 < y < 3.5 and 0 < s < 3.5. In constructing this table 
the spatial values a,u(O, s) = -y, a,,u(y, 0) = a,u(y, 0), and ~(0, 0) = yn”* are 
useful. Inside the grid, a bicubic Hermite interpolation formula [ 191 determines u 
from the values on the grid. Outside the grid the asymptotic logarithmic term is used. 
The error of this procedure is about 1 part in lo--“. 

For periodic systems the pair trial density matrix is given in terms of the infinite 
system one by Eq. (47). The time step /I is usually small enough so that only one 
term in the sum of Eq. (45) is important since there is a very small probability of a 
particle diffusing the size of a box length in one step. For an accuracy of IO-’ in up 
this demands that 

L > 7.4(~'~/2~)'!'. W) 

Then with this assumption 

UP(r,,rz;P) =x u(r, t Ln, r2 + hi/J). 
n 

647) 

Using the asymptotic expansion for u and the definition of the Ewald image potential 
up(r), and again using (A6), 

~p(r,,T2;B)=pj’~~ffp(Ir, + (1 -A)r,) 
0 

+ u(r, , r2 ; p) - 6 ln( 1 t 2$/y). (‘48) 

The integral in (A8) can be estimated in terms of its value and derivative at the end 
points by the Euler-MacClaurin formula [ 181. 
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P P up@, , r2 ;P) = y (VP@,) + Or2)) - 12 (Vo’(r,) - Vu’(r,)> cl2 

where the same approximation has been made for the logarithm term so that 
singularities at the origin do not occur. The error in the Euler-MacClaurin formula is 
less than 

2 e.e./3 II* 
720r’ (AlO) 

The density matrix has been broken into a periodic term (Ewald potential and electric 
field) and a short ranged correction which is independent of the boundaries. With 
periodic boundary conditions the trial-density-matrix-local-energy contains an 
additional constant term 

(All) 

where F is defined in Eq. (37) and R is the volume of the periodic cell. By charge 
neutrality, this term is only appreciable for a one-component plasma and comes from 
the neglect, in the trial density matrix, of the plasmons. 
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